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ABSTRACT

KROLL, JAMES T. An Analysis of the Error Characteristics of Atlantic

Tropical Cyclone Track Prediction Models. (Under the direction of MARK

DEMARIA).

Using 140 track forecasts between 1976-1985, the error characteristics

of the National Hurricane Center's tropical cyclone track prediction models

are assessed with special emphasis on the Moveable Fine Mesh(MFM) model.

The results indicate that beyond the 12-hour forecast, the MFM has the

* ~ lowest mean forecast error of the NHC models. The forecast error

component, relative to storm motion, are also analyzed. The MFM displayed

the smallest mean across-track error, which is a measure of the accuracy of

the path of movement.

A consensus style track forecast known as the Combined Confidence

Weighted Forecast(CCWF) scheme is tested using the track prediction output

from NHC models. The CCWF provides improved track forecasts at 12 and 24

hours relative to the individual track prediction models. The CCWF scheme,

on average, is also more accurate than the official forecast disseminated by

* NHC.

An attempt is made to develop linear regression models, using

independent variables which describe storm characteristics and the

• large-scale wind field, to predict the magnitude of the NHC track prediction

model forecast errors. Correlations between these variables and the

forecast errors are extremely weak and the regession models developed do

* not explain a large percentage of the variance in the forecast errors.
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Finally, a spectral barotropic model is used to identify the effects that

sparse data and initial position errors have upon track forecast errors.

Various scales of motion are removed from the initial wind field to test the

effect of sparse data. The forecast errors do not increase significantly until

scales at and below 1000 Km are removed from the initial field. Initial

position errors are also introduced into the model when it is initialized.

These initial position errors have a significant affect upon the mean

forecast errors at 12 hours, however, by 24 hours the affect decreases

o dramaticaly and by 48 hours the initial postion errors have no affect upon

'K.' the mean forecast errors.
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ABSTRACT

KROLL, JAMES T. An Analysis of the Error Characteristics of Atlantic

Tropical Cyclone Track Prediction Models. (Under the direction of MARK

DEMARIA).

Using 140 track forecasts between 1976-1985, the error characteristics

of the National Hurricane Center's tropical cyclone track prediction models

are assessed with special emphasis on the Moveable Fine Mesh(MFM) model.

., The results indicate that beyond the 12-hour forecast, the MFM has the

lowest mean forecast error of the NHC models. The forecast error

component, relative to storm motion, are also analyzed. The MFM displayed

the smallest mean across-track error, which is a measure of the accuracy of

the path of movement.

A consensus style track forecast known as the Combined Confidence

Weighted Forecast(CCWF) scheme is tested using the track prediction output

from NHC models. The CCWF provides improved track forecasts at 12 and 24

hours relative to the individual track prediction models. The CCWF scheme,

on average, is also more accurate than the official forecast disseminated by

NHC.

An attempt is made to develop linear regression models, using

independent variables which describe storm characteristics and the

large-scale wind field, to predict the magnitude of the NHC track prediction0

model forecast errors. Correlations between these variables and the

forecast errors are extremely weak and the regession models developed do

not explain a large percentage of the variance in the forecast errors.



Finally, a spectral barotropic model is used to identify the effects that

sparse data and initial position errors have upon track forecast errors.

Various scales of motion are removed from the initial wind field to test the

effect of sparse data. The forecast errors do not increase significantly until

scales at and below 1000 Km are removed from the initial field. Initial

position errors are also introduced into the model when it is initialized.

These initial position errors have a significant affect upon the mean

forecast errors at 12 hours, however, by 24 hours the affect decreases

dramaticaly and by 48 hours the initial postion errors have no affect upon
the mean forecast errors.
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1. INTRODUCTION

1. 1 General Comments

The prediction of the track of tropical cyclones may be considered one of

the most difficult tasks in synoptic meteorology. Although some storms

move along a steady, predictable path and are considered 'well behaved',

other storms exhibit eratic movement making it virtually impossible to

forecast an acceptably accurate storm track. For a storm which threatens

populated coastal regions, accurate track forecasts, out to at least 24

hours, are necessary to give residents sufficient advanced warning to take

appropriate action.
The standard measure of track prediction forecast accuracy is the

forecast error (FE), which is simply the vector distance between the

observed and forecast postion of the tropical cyclone. Analyses of the

accuracy of the official track forecasts produced by the National Hurricane

Center (NHC) are well documented. A study by Dunn et.al.(1968) indicated a

12% decline in the mean forecast error (MFE) between 1958-1966. The

improvement in track prediction accuracy was largely attributed to the

increased availability and use of objective guidance models. With better

objective guidance models in the research phase of development, there was

a general belief that the decline 4n "FE's would continue right through the

1970's. In fact, the Department of Commerce report on Hurricane Camille

recommended In 1969 that the 24 hour MFE of the official forecast be

reduced from 180 Km to 120 Km by 1974. More recent studies indicate that

this goal was never accomplished. An analysis by Neumann and Pelissier
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(1981 b) indicated that the MFE of the official forecast for the entire decade

, of the 1970's was 175 Km, a very negligible decline from the 1969 level.
The relatively small decrease in the official forecast MFE is somewhat

-; surprising considering that several track prediction models became

available during that time period. By 1976, NHC forecasters had output from

up to seven models available to them for guidance. The bases for these
,4..,

models are varied. Some models use statistical procedures while others use

dynamical principles to predict the storm movement. Neumann and Pelissier

(1981 a) analyzed the error characteristics of these models and decided that

no one model was particularly superior or inferior. Each model had some
temporal, economic or spatial advantage. Therefore, they projected that

objective guidance would be obtained from a number of different models for

" quite some time.i

1.2 Statement of Intended Research

The general purpose of this research is to study the characteristics of

the forecast errors of tropical cyclone track prediction models. The first

section analyzes the characteristics of the NHC operational track prediction

models. The second section analyzes the effectiveness of some objective

techniques for reducing the forecast errors associated with those

prediction models. The final section uses numerical simulations of track

forecasts to determine the relationships between initial position errors and

inadequacy in the data coverage to the magnitude of the forecast errors. A

more detailed description is contained below.

-o'"
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a. Analysis of the Operational Model Forecast Errors

'p.:

Neumann and Pelissier (1981a) is an in depth study of the general error

characteristics of the NHC operational track prediction models. However,

the analysis of the Moveable Fine Mesh (MFM) model is limited because this

model was not operational until 1976. Other studies of the MFM such as

Hovermale and Livezey (1977) are also limited to three to four year periods.

As an update to the research of Neumann and Pelissier, the first section

of this study is devoted to a detailed analysis of the error characteristics

of the MFM and how it compares with other operational track prediction

models as well as the official forecasts disseminated by NHC. Data from

model and official forecasts between 1976-1985 are used to perform this

r": analysis, Performance values, as defined by Neumann (1979), are computed

to assess the skil of the MFM in relation to climatology and persistence

Sr,. which are considered the basic tools of meteorology and an excellent

benchmark for comparison. The MFE's of the models and the official

forecasts are separated into their latitudinal and longitudinal components

to assess directional biases associated with the track predictions. To

S,"incorporate storm motion into the components of the MFE's, the coordinate
system is rotated such that the Y-axis is parallel to the instantaneous

motion of the storm. This rotation effectively changes the the MFE

components to reflect along and across track errors.

b. Testing Methods for Improving Track Prediction Model Guidance

The second section of this study is an expanded version of the research

'S5'I
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by DeMaria (0985a) which provided hope that the FE's of certain track

prediction models could be predicted using linear regression techniques. In

particular, DeMaria used independent variables which described the wind

field to predict the magnitude of the forecast error. To confirm that FE's

can be predicted, a larger data set and more independent variables are used.

Another potential solution for improving forecast guidance was

recently developed by Tsui and Truske (1985). The Combined Confidence

Weighted Forecast (CCWF) scheme is a 'consensus' style forecast which uses

the track prediction output of operational models to produce a new track

prediction. This scheme was developed for the Joint Typhoon Warning

. Center (JTWC) to reduce the confusion when any number of the 26

operational track forecast models were providing conflicting results. The

CCWF concept has been extensively tested on the JTWC models but not on

the NHC models. This study also includes a test of the CCWF using NHC track

prediction model forecasts.

c. Theoretical Tests of Effects of Sparse Data

Coverage and Initial Position Errors

0

-5 Tropical cyclones frequently track through open ocean regions of the

Atlantic which are essentially void of meteorological data. This void

-prohibits dynamical models from accurately representing the wind field

S in the vicinity of the storm during the initialization process. Given that

there is some error in the initial wind analysis, it is Important to ask: Is

there a limit to the accuracy of these track prediction models? The final

section of this research adresses this question. A spectral barotropic

,?...

-0 - . ,. ".. . " . " . - '.". .' ' " . " ' . " " - " ' ' 1
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model, described by DeMaria (1 987), is used to produce track forecasts for

some selected storms from previous years. Since this model uses spherical

harmonic functions to represent the wind field, data from shorter
*: wavelengths are removed from the initial wind field to simulate the effect

of the sparse data coverage. The model simulations are repeated , each time

removing information about larger wavelengths, to assess the wavelength

region that has a critical effect on track forecast accuracy.

Another problem that can affect the accuracy of track prediction

models are the errors in the initial positioning of the vortex center. An

important question to ask here is: Can we quantify the effect of these

errors on track prediction models? In an attempt to answer this question,
" p

i

the barotropic model mentioned earlier is used to simulate the effect of

initial position errors. In particular,model simulations are executed with

the vortex center displaced in a variety of directions and distances trom the

actual storms center. The last portion of this research analyzes .the results

of this test.

1.3 Governing Principles of NHC's Track Prediction Models

A major portion of this study Involves analysis of the error
characteristics of the NHC tropical cyclone track prediction models.

Therefore, it is worthwhile to briefly review the concepts on which these

S- prediction models are based. NHC currently has seven operational tropical

cyclone track prediction models with others in the developmental stage.

The basic rationale of these models is listed below:
, "-

, d

0 °
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a. HURRAN

The HURRicane ANalog model (Hope and Neumann, 1970) is based on the

concept that tropical cyclone tracks can be grouped into 'families'. The

model scans all storm tracks since 1886 in search of tracks similar to the

current storm. Candidates for the analog family of storms are selected

using storms which 1) occured within 15 days of that Julian date, 2)

passed within 2.5 degrees of latitude, 3)were moving within 5 knots of the

current storm speed. Although the analog model has a poor performance

record, forecasters like this model because the track is accompanied by

probability ellipses. One shortfall to the analog method is that forecasts

are not derived when the current storm track is anomolous.

b. CLIPER

The CLimatology and PERsistence model (Neumann, 1972) uses least

squares regressions to derive a track forecast. CLIPER uses eight first

order predictors including storm position, current and 12 hour old u and v

component storm speeds, Julian day and maximum wind speed. The model

was originally designed as a backup for the times when HURRAN failed to

produce a forecast, however, CLIPER very consistently outperforms HURRAN

especially in recurvature situations (Neumann, 1977).

c. NHC67 and NHC72

The basis for the NHC67 (Miller, et.al.,1968) and the NHC72

(Neumann, et.al., 1972) models are quite similar to CLIPER. The major

difference is that the models also incorporate 24 hour old 1000, 700 and

%. 500 mb geopotential heights as predictors. Between the NHC67 and NHC72,

the major difference Is that the NHC72 has a larger dependent data set.

0% .

0I
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d. NHC73

The NHC73 model (Neumann and Lawrence, 1975) is also a least

squares statistical model which uses the output of CLIPER. It also uses

dynamic meteorological parameters including current, 24, 36 and 48 hour

geopotential heights as predictors. The future geopotential heights are

obtained from the NMC primitive equation model.

e. SANBAR

The SANders BARotropic model (Sanders, 1975) is based on the

concept that momentum advection of vorticity is the primary factor in

tropical storm motion. In other words, the motion of tropical storms is

0: mostly a function of the interaction of the vortex with the large scale

steering currents of the atmosphere. To predict the storm track, the model

* develops a streamfunction field from pressure weighted deep layer mean

winds which are used to initialize the model. The barotropic vorticity

equation is then solved foward in time and the storm position is identified

by the minimum in the streamfunction field.

f. MFM

The Moveable Fine Mesh model (Hovermale and Livezey, 1977) is a

baroclinic model which operates under similar physical premises as the

primitive equation models. One unique advantage that the MFM has is that

the grid is capable of moving with the storm throughtout the forecast period

of the model. Also the MFM has a finer resolution both vertically and

horizontally than many other models based on the primitive equations.

.1u *
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2. Error Characteristics of NHC Track Prediction Models

2.1 Data and Definitions

Neumann and Pelissier (1981 a) stressed the importance of developing a

homogenous data set when analyzing the error characteristics of tropical

cyclone track prediction models. Several factors, including maintaining

homogeneity, placed severe restrictions on the data sample developed for

this investigation. The most severe restrictions were 1) the MFM is only

* utilized for storms which potentially threaten populated areas, 2) the MFM

must project the storm track out to at least 48 hours, and 3) the analog

model (HURRAN) does not run under anomolous forecast situations. The first

restriction immediately reduced the number of forecast cases to under 200.

The second restriction removed another 25% of the cases from

consideration. When the third restriction was imposed, only 60 forecast

cases remained. In the interest of developing the largest sample set

possible, the third restriction was not imposed. Therefore, data from the

HURRAN model were not included in this study. Under these criteria, a

* sample set consisting of 140 12-48 hour forecast cases and 56 72-hour

forecast cases was assembled.

To assess the forecast error (FE), knowledge of the actual storm track

', is necessary. For this study, the best track data is used. Best track is the

post storm analysis of hourly positioning of the storm. This data is

generally more accurate than the track information available at forecast

*time. The FE, which is used to assess the track prediction models' forecast

- accuracy, is easily calculated using spherical trigonometry. If o1 and 42

0
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represent the best track and model forecast storm latitudes for a certain

time, than the FE is computed using 2.1 where Ax represents the difference

FE = CF *ARCCOS (SIN cZl*SIN cD2+ COS cDi 1 C0S(c2* COSAX) 2.1

p . between the best track and model forecast longitudes. The conversion

factor (CF) equals 60 if FE's are measured in nautical miles and equal I I I if

, FE's are measured in kilometers. To obtain the latitudinal and longitudinal

components, a plane geometric approximation is used. The latitudinal

* (north-south) component is approximated by CF*( 4 2- cD 1) while the

longitudinal (east-west) component is approximated by CF*COSd *A X where
a '; represents the mean cosine value using 4 1 and (P2. These geometric

approximations create small errors, especially at distances far from the

equator, however, for this study the approximation errors are negligible.

2.2 Analysis of the Mean Forecast Error Characteristics

A summary of the MFE's for this study is listed in Table 2.1. The

HURRAN model is omitted due to the homogeneity problem discussed earlier.

From these data, it is evident that the MFM displays superior track forecast

accuracy at and beyond the 24-hour forecast period. This fact is true for

the entire sample as well as the stratified subsets for storms which are

initially north or south of 250 N.

Neumann and Pelissier (1981a) correctly state that MFE's, such as those

listed in Table 2.1, reveal little information about the skill of a forecast

6
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TABLE 2.1. Mean Forecast Errors (Kin) for NHC tropical cyclone track
prediction models and official forecasts for entire sample northern storms
and southern storms. Official forecasts do not include 36-hour track
prediction.

ENTIRE SAMPLE
MODEL Forecast Interval

12 24 36 48 72
CLIPER 103.6 214.4 343.8 486.5 720.2
NHC67 95.5 184.6 302.2 444.5 738.8
NHC72 101.3 212.9 363.3 467.3 635.2
NHC73 90.4 191.4 293.9 420.2 736.9
SANBAR 98.6 203.9 325.9 463.5 772.2
MFM 109.3 175.1 233.9 295.6 389.2
OFFICIAL 91.4 189.4 - 402.3 621.8
NO. FORECASTS 140 140 140 140 56

NORTHERN STORMS
CLIPER 99.8 219.8 359.1 518.1 729.1
NHC67 95.1 196.3 328.7 482.7 756.8
NHC72 96.2 218.9 368.5 483.9 640.0
NHC73 89.4 195.3 298.1 427.3 691.0
SANBAR 97.5 203.6 332.3 479.4 750.0
MFM 115.2 187.2 248.9 317.4 392.5
OFFICIAL 89.5 194.2 - 425.5 657.8
NO.FORECAST 89 89 89 89 39

SOUTHERN STORMS
CLIPER 110.5 205.1 317.6 431.3 699.9
NHC67 96.1 164.4 256.4 378.5 697.5

_ NHC72 106.6 202.6 351.7 438.6 624.4
NHC73 92.2 184.2 286.3 407.1 848.4
SANBAR 100.6 204.6 314.2 434.8 831.6
MFM 98.9 154.2 207.8 257.7 381.7
OFFICIAL 94.7 181.0 - 363.6 560.6
NO. FORECAST 51 51 51 51 17_ .



~model. Policy set forth by the American Meteorological Society defines

,, forecast skill as an ability to achieve forecast accuracy greater than

'accuracy achieved through basic methods. In meteorology, the basic

~methods of forecasting include climatology and persistence. Therefore, the

.. *'"CLIPER model is a logical choice to use as a benchmark to compare the skill

' of other track prediction models. Using this concept, Neumann (1979)

I developed a simple method for assessing the performance s'kill of these

models. The performance skill is defined as

P = I 0*(Ec-E m)/Ec 2.2

.

:" where Ec is the MFE of the benchmark model, in this case CLIPER, and Em is

~the MFE of the model of interest. Simply stated, this method uses the

i CLIPER model to "normalize" the MFE's of the other forecast models and

;': creates a measurement which allows comparison of skill between stratified
. data sets.

"!! Figure 2.1 represents a plot of the performance values for the five

track prediction models and for the official forecast. Positive performance

Sovalues indicate that a model has greater skill than CLIPER while negative

cvalues indicate that a model is inferior to the basic tools of climatology and

ftopersistence. For the entire sample, the NHC67, NHC72 and NHC73 display

maiRmode ismarogicalt coe to ue as a4benchar t comparaeskl

decaying through 72 hours. Of greater significance is the performance of

whe Ec isthe F ohmaough it is inferior to CLIPER at 12 hours, the MFM's

performance is better than CLIPEr p at 24 hours and continues to improve

C m

crae a mesrmn whc alow coprio of skl bewe stratified...
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through the 72-hour period. On average, the maximum improvement of the

other models and the official forecast over CLIPER is 10 - 15%. In sharp

contrast, this study indicates that the MFM's performance surpasses CLIPER

by 31%, 39% and 46% at 36, 48 and 72 hours respectively.

Some interesting variations in performance are exhibited for the

latitudinally stratified data sets. Observations of interest include:

1) The NHC67 performs better than CLIPER through 48 hours for southern

storms. This is in contrast to the findings of Neumann (1979).

2) The NHC72 displays a characteristic decline in performance at 24 and

36 hours for both northern and southern storms.

3) Except at 12 hours, the NHC73 performs much better for northern

storms. This is consistent with Neumann (1979).

4) The SANBAR also performs better, relative to CLIPER, on northern

storms. This is somewhat surprising considering that the model rationale

is better suited for the southern zone.

5) The MFM displays a 10% improvement over CLIPER at 12 hours in the

southern zone. Therefore, the overall poor performance of the MFf at 12

hours appears to be a result of poor early performance on northern storms.

*Also, the MFM is still the superior model in both zones at and beyond 24

hours. It is noted that little emphasis is placed upon the 72-hour

performance for the stratified data sets. With only 56 cases in the entire

sample, the small size of the stratified data sets cast doubt on their

usefulness.

Of particular interest is a comparison of these results with the 4-year

study in Neumann and Pelissier (1981a). The earlier study indicates that

the MFM's performance skill was significantly worse (P - -38) at 12 hours

"6 ;.""" " -,'. ,,,-- -. - " " ' " '. " '
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and about equal with CLIPER at 24 hours. Uncertainties in the initial

analysis were cited as the causitive factor for the poor early period

performance and efforts were underway at that time to improve the

initialization process. The current study suggests that the MFM's inferiority

to CLIPER at 12 hours has decreased substantially. The overall performance

of the MFM is only 7% worse than CLIPER at 12 hours and displays an 18%

improvement over the benchmark model at 24 hours.

The results of this analysis indicate that improvement to the MFM's

initialization process have lead to improved early period forecasts. To

confirm this finding, the data set was stratified into two groups. Group I

represents all forecasts between 1976 - 1981 and contains 63 cases while

Group 2 represents forecasts between 1982 - 1985 and contains 77 cases.

Performance values for these groups are displayed in Figure 2.2. It is

". obvious that MFM forecasts during 1982 - 1985 exhibit greater skill than

forecasts during the earlier operational years of the model. It is noted that

Figures 2. 1 b and 2. 1 c show that the 12-hour performance of the MFM is much

,q better for southern storms. It is possible that a disproportionate ratio of

northern and southern storms in either group could have biased the results

in Figure 2.2. A survey of the data, however, indicates that Group I has an

equal ratio of storms from each zone and Group 2 contains seven northern
'5

storms for every three southern storms. Therefore, it is evident that
.,'.

latitudinal bias is not the cause of the improved 12-hour MFM performance

and we must conclude that improvements to the MFM's initialization process

have resulted in more accurate 12-hour forecasts.

0 An important question to ask at this time is what aspects of the FE

-J distributions lead to such a large difference between the MFE's of the MFM
'5

. ,
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and the other track prediction models? Is it because the MFM produces much

more accurate forecasts or is it because the other models are more prone to

producing some very inaccurate forecasts which bias their MFE's upward?

An anlysis of the FE distributions indicates that the disparity is a result of

contributions from both processes.

Figures 2.3 and 2.4 represent the percentage distributions of the FEs

for all six track prediction models at 24 and 48 hours, respectively. At 24

hours, the MFM, NHC67 and NHC73 all have 60% of their FE distributions

below 175 Km. This is not surprising since these are the models with the

lowest MFE's at this time period. The superiority of the MFM at 24 hours

results from the fact that 90% of the distribution lies below 300 Km while

for the other two models the 90% mark lies at 350 Km. Although the NHC67

and NHC73 are not very prone to producing the extremely inaccurate

forecasts, it is clear that the upper 10% of their distributions have a much

larger contribution to their MFE's when compared to the MFM.

The model which appears most likely to produce the extremely

inaccurate forecasts is the NHC72. It's FE distribution reveals that 60 % of

the distribution lies below 200 Km while the upper 10% of the distribution

* lies above 450 Km. Clearly, the upper tail of the NHC72 FE distribution

results in a much larger MFE.

The FE distributions at 48 hours better demonstrates the accuracy of

* the MFM track forecasts. For the MFM, 60% of the distribution lies below

about 250 Km. For all other models the lower 60% of the distributions lie

below 450 Km. Again the MFM produces very few extremely inaccurate

o forecasts at this time period. The upper 10% of the distribution lies above

-.. 500 Km while the upper 10% mark for the other models lies between
-?
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750-900 Km. Another striking feature is the large number of extremely

accurate forecasts produced by the MFM. Approximately 18% of the FE's are

below 100 Km and 33% are below 150 Km. None of the other track

prediction models can compare with the frequency at which the MFM

produces superlative long-range track forecasts.

From this analysis it is fair to say that under the conditions for

which the MFM is activated, it is a clearly superior track forecast model.
Its extremely high performance skill is a result of its ability to avoid

producing the extremely inaccurate track forecasts in the short to

* mid-range forecast periods as well as produce some very accurate

long-range forecasts.

2.3 Analysis of the Forecast Error Components

In addition to analyzing the magnitude of the track prediction model
MFE's, analysis of the FE components can also be helpful in assessing the

error characteristics of the forecast models. In particular, analysis of the

FE components can identify directional biases that may exist. Since FE

* components can take on both positive and negative values, a truly unbiased

model should have a mean component error or systematic error

approximately equal to zero.

Figure 2.5 displays the analysis of the systematic latitudinal

(north-south) errors. Negative values indicate that the predicted track

tends to be south of the observed track. For the entire sample, the NHC67,

NHC72, CLIPER and the MFM exhibit a nominally small bias. In contrast, the

%%.: SANBAR displays steady growth of negative systematic error. The NHC73,

0L , " 'o . .' /,'". ,, . ' • . ' - '" " ' " " " " ' .. "- ,
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Fig. 2.5. Systematic latitudinal forecast errors (Km) for NHC track
forecast models for (a) entire sample, (b) northern storms and (c) southern
storms. Negative values indicate that forecast track is south of observed
track.
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which appears to be unbiased through 36 hours, exhibits a rapid growth in

systematic error through 72 hours. The larger negative systematic errors in

the later two model may be indicative of their inability to predict an

accurate track for recurving storms.

For northern storms only, the NHC67 is the least biased model in

terms of latitudinal errors. This finding is consistent with Neumann(1979).-.

which discusses the NHC67's ability to predict accurate tracks for storms

recurving along the eastern United States. The SANBAR and NHC73 models

again display the largest negative biases at 48 hours while the MFM exhibits

* a fluctuating bias which is difficult to interpret.

For southern storms only, most models display very little bias

through 48 hours. The MFM appears to perform especially well in this

category. The largest negative bias is again the NHC73 while the NHC67 is

the only model to display a positive bias. Perhaps the attributes of the

NHC67 which make it perform so well on recurving northern storms causes

it to recurve southern storms too early.

., Figure 2.6 is a graph of the systematic longitudinal (east-west)

errors. Negative values indicate that the predicted track tends to be west

* of the observed track. For the entire sample, the systematic longitudinal

biases are relatively small through the 48-hour period. The NHC72 and

NHC73 have slight westward biases at 36 hours, but, both models reduce

* that bias at 48 hours. Eastward bias is displayed by both dynamic models

through 48 hours. The MFM seems to compensate for this bias by 72 hours,

however, the SANBAR's bias continues to grow.

*e For northern storms only, the MFM exhibits the largest magnitude of

bias. The MFM's bias pattern is almost identical to the pattern for the
a-.

0, ' . . . . . . . , ., . - , ,
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-:.



27

a:: I _j, L[

F-4 p4

4 (E Csi~

Ca C

(KC uII o/1 m Q



28

entire sample. The SANBAR model also displays a steadily growing

eastward bias through 48 hours. In contrast to the northern subset, the MFM

and SANBAR exhibit very little bias for the southern storms. However, the

series of NHC statistical models all exhibit distinct westward biases

especially at 36 and 48 hours. The growth of the NCH67 errors is surprising

since negative systematic longitudinal errors is symptomatic of not

predicting recurvature of certain storms. This is in conflict with the

results for the latitudinal errors for the southern storms.

One other general characteristic of the systematic errors is worth

noting. The CLIPER model, which is the least complex of the statistical

prediction models, also displays the least bias both for the latitudinal and

longitudinal errors. This characteristic is true for both northern and

southern storms.

Lack of bias in a track prediction model is a desirable characteristic,

however, it does not guarantee that a model is the most accurate. CLIPER is

an excellent example of this. The previous analysis confirms that CLIPER

displays the least bias, yet in the 24-46 hour forecast range, the other

forecast models have lower MFE's. Further proof that bias and accurate

track prediction are not necessarily linked is displayed in Figure 2.7 which

exhibits the absolute mean of the latitudinal and longitudinal error
components. Clearly the CLIPER model is among the worst performers in

both categories. It is also evident that the MFM is the best performer in
,V'. both categories.

Analysis of the MFE components yields general information about the

0 directional error characteristics of these track prediction models, however,

the latitudinal and longitudinal components can have different
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interpretations depending upon the motion of the storm. For example, a

latitudinal error represents an error along the track for storms moving

northward, however, it represents an error across the track for a storm

which is moving eastward. To avoid this conflicting representation,

Neumann and Pelissier (1981a) propose a method for incorporating the

storm motion into the MFE components. By rotating the y-axis such that it

is parallel to the instantaneous motion of the storm, the MFE components

are altered to reflect the across-track components (CTE) and along-track

components (ATE).

* Figure 2.8 graphically displays how the FE's are rotated to represent

the ATE's and CTE's. If a storm is located at the origins of the axes, moving

toward the northeast, and the model forecast position is at point F, then the

ATE and CTE components are easily determined. The physical meaning of the

components is simple and direct. The CTE basically represents the accuracy

of the models prediction of the path of movement. The ATE mainly, but not

entirely, represents the models ability to predict the speed of the storm. It
I.; is important to note that the ATE does not exactly represent the error in

predicted storm speed. This is because the error in predicted direction

* automatically creates an ATE component of the FE. Therefore caution must

be exercised when interpreting the ATE's.

Figure 2.9 represents a plot of the mean ATE's versus the mean CTE's

* for the entire sample as well as northern and southern storms. For the

entire sample, the NHC67, NHC73, CLIPER and MFM exhibit left-of-track

bias during the early forecast period, but shift to a right-of-track bias by

0 48 hours. The NHC72 and SANBAR exhibit a strictly left-of-track bias. The

major feature is the consistently small directional bias (CTE) of the MFM.

,1i

.



0

32

N

- -

V F

S

Fig. yste

,F Ig. 2.8. Physical representation of coordinate system rotated toward
Instantaneous motion of storm. Solid axes are standard cartesian axes and
dashed axes represent axes relative to storm motion which Is In direction of
arrow. Along track error and across track error components are represented

-, by ATE and CTE respectively.

5%I

5I %

0D p



~33

o a

STORM DIRECTION
0

LEFT RIGHT

S-40 A 4

, ... - /- < I..

. -o 'MFM

KHC6

-'' I HC7.-~120

E --- "O F F I C I A L -,

\'ANBAR '

N I '\

- eok 4t "--- ,.

~-200 48I

-- 320 -220 00 o10 sI'., -

N ACROSS TRACK ERRORS

* Fig. 2.9. Plot of across track versus along track errors (Kin) for (a) entire
sample, (b) northern storms and (c) southern storms for 12 through 48
hours for NHC model and official track forecasts. Arrow points in direction
of instantaneous storm motion.S'

VI.'



WE
-p

* p.
N 34

~- A

- .---

-~ ~ 'I, -~

- -
z

I, p

/ 7~ z
/

1/ ~-' --- -* / ~~I2
- C12

- -- 0

\. -- ~~

w

-J

C

0
-p -,

-___________________________________________ C

0 0 0 0 0 0 0 0 0

.d~. , - - 'p

SHOU~a x~vUi o~iO'iv

S

C,

gO

* - -
z

0 P
U, g ti~ V

'V. U
'S.

w 4 *J

I- ~ ~ - - -~ C
0* w

* 5 - -~ C

U U' ~ -. (%J
* ~C4 -

5-. La...
0*,

0
'5'

'S

~ '~ -



3.5
Although the NHC67 rivals the MFM's ability to predict the path of

movement, its larger ATE's make the MFM the better model in terms of

minimized bias.

The latitudinally stratified samples exhibit some different

characteristics. For northern storms, almost all models display a maximum

left-of-track bias at 24 hours which shifts to a right of track bias by 48

hours. For southern storms, left of track bias through 48 hours is

characteristic of all models except the MFM and NHC67. As might be

expected, the ATE's are much larger for the northern storms.

* For both stratified samples, the MFM is the model displaying the least

amount of bias. For southern storms, the CTE's of the NHC67 are lower than

the MFM, however, the ATE values of the NHC67 at 24 hours are larger than

those of the MFM at 48 hours. The overall combination of smaller ATE and

CTE values makes the MFM the model with minimized bias.

As stated earlier, lack of bias is a desirable attribute but does not

guarantee that a model is providing the most accurate forecasts. Accuracy

is determined only by the absolute mean errors. Table 2.2 lists the absolute

cross track errors for the entire and stratified samples. For all cases, no

• model exhibits superiority in minimizing the CTE at 12 and 24 hours. At 36

hours, the MFM displays slight improvement over the other models and by 48

hours it has a 24% smaller across-track error than the NHC73, the next most

• accurate model. For northern storms, the SANBAR CTE's rival that of the
MFM, however, by 48 hours the MFM is again the superior model. For

southern storms, the NHC67, NHC73 and MFM show the smallest CTE's

* through 36 hours with the MFM taking best honors at 48 hours.

In the analysis of the ATE's and CTE's, the MFM appears to be the
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TABLE 2.2. Absolute mean values of across-track errors (CTE) for entire

sample, northern storms and southern storms. Errors are in Km.

ENTIRE SAMPLE
MODEL Forecast Interval

12 24 36 48

CLIPER 61.3 117.9 178.3 220.3
NHC67 55.1 100.8 160.8 221.1

NHC72 54.9 102.3 171.9 218.0
NHC73 51.5 103.2 152.4 189.4
SANBAR 58.9 103.6 156.9 201.3
MFM 59.3 102.3 136.3 144.6

NORTHERN STORMS

CLIPER 54.8 116.1 172.7 217.8
ik. NHC67 55.3 103.9 182.4 237.7

NHC72 52.0 107.5 183.8 229.0

NHC73 49.9 108.5 160.5 211.3
SANBAR 54.2 94.7 144.0 196.8
MFM 60.9 107.4 141.6 144.6

0 SOUTHERN STORMS

CLIPER 72.4 120.9 187.2 224.1
, NHC67 54.6 95.7 127.0 195.7

NHC72 59.8 93.8 153.3 201.1
NHC73 54.2 93.9 138.6 152.8
SANBAR 67.2 118.9 178.9 208.3

% MFM 56.4 93.9 127.9 144.5

.0
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dominant performer among the track prediction models, both in terms of

bias and minimum absolute errors. The minimized CTE's associated with the

M7M reflect its ability to accurately predict the path of movement tropical

storms. The Fiorino and Harrison(1982) study of the Navy's Nested Grid

Model concludes that the advantage of dynamic models, like the MFM, lies in

their ability to accurately predict the path of movement. The results of this

test verify their conclusion.

2.4 Analysis of Model Speed Errors

. In the previous section, the large negative ATE components suggest that

,.-. many of the track prediction models exhibit a slow speed bias. This bias is

discussed in several studies of various track prediction models. Speed

errors (observed minus forecast speed) in this study are computed using a

12-hour interval point-to-point method. This is not the most accurate

method, but its simplicity makes it appealing to use.

The systematic speed errors for the entire and latitudinally stratified

samples are displayed in Figure 2.10. For all cases, many of the models

* exhibit a decline in the speed errors at 24 hours while the-MFM and NHC72

g continue the decline through 36 hours. By 48 hours, all models except the

NHC67 display a rapid growth in speed error. This rapid error growth is also

* evident in the northern subset. This leaves little doubt that the rapid

growth is a result of the influence of mid-latitude westerlies on the

.% tropical storms as they move northward. With the exception of the NHC67,

* which shows a steady 0.2-0.4 m/s bias, the MFM demonstrates the lowest

mean speed errors for the northern subset. The CLIPER, SANBAR and NHC73

0%
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40
display the worst performance in this category. For the southern subset,

the SANBAR model displays the least bias in the predicted storm speed. The

SANBAR, MFM and NHC72 average model fore' ast speeds are faster than the

observed speeds at 36 hours while the CLIPER and NHC73 display a

distinctly slow bias from 24-48 hours.

In general, the NHC67, NHC72 and MFM are the models which have the

lowest systematic speed errors. The distribution of the speed errors for

these models are displayed in Figure 2.11. Although both statistical models

have slightly lower mean errors, the distribution of those errors is much

* broader around the mean than in the case of the MFM. Almost 75% of the MFM

speed error distribution lies between -2 to 2 m/s while less than 60% of

the distribution for the NHC67 and NHC72 fall in this range. This suggests

that the MFM is actually better at forecasting storm speed as well storm

track. The results of the ATE analysis in the previous section suggested

that the MFM is the superior model for storm speed prediction and this

analysis confirms that finding.

'.p

f.

-p

,t.

ad',

6 .....



41

lL

C\j

0 '-U)

o 0

CLt
-. OL.

-I.,CL* O-

-e u-

0

-4-E

OU L

75,



0

42

'1
A

1~ --

0

*1~
4)

I C

C
0

I- Li

*1~*
44 I --

~1.**

I C~%I
'WV -r
S -A.' '-4, LI..

0 2 'I, C

0

l~.S

4~4

*1~

0
'p

.4'
V.

44

6

if V S~ *Sj - - - -
4' ~7~Klr~7~ **WV.



=1%

43

3. Combined Confidence Weighted Forecast (CCWF) Scheme

3.1 General Concepts

The goal in tropical cyclone track forecasting is to consistently

provide the most accurate track forecasts possible. Research over the past

two decades indicates that the official forecasts have not improved

significantly during this time. The results of the previous chapter indicate

that the objective guidance models are not providing the accurate guidance

needed by the forecasters. In fact, it can be said that if operational

* forecasts are to improve, then the guidance from objective models must

improve. The analysis of the model forecast errors indicates that the MFM

is the only model which provides significant improvement over the official

forecast at 36 hours and beyond. Yet economic and computer time

considerations prevent this model from being used except under certain

forecast scenarios. The lack of consistently accurate track predictions

from the objective models makes the task of operational track forecasting

all the more difficult. With the results of up to seven objective guidance

models available, the conflicting results of these models can produce more

* confusion than assistance.

.N The concept of creating a mean track forecast from the output of

several track prediction models is not a new one, however, recent research

* by Tsui and Thuschke (1985) has fine tuned this process with the result

44 •being the Combined Confidence Weighted Forecast (CCWF) scheme. The CCWF

scheme is based on the concept that every tropical cyclone track prediction

*model yields the most accurate forecast with a certain frequency for any

given forecast period. These frequencies represent a confidence in the

tm. . . . . ../ , . - ' ,, ', , " . " ," '"4 44'a". 
'w ':& ' ', ' " '~ '" ¢ "'' . "



ability of the model to produce an accurate forecast. The CCWF represents a

consensus' style forecast based on these confidence frequencies and the

track prediction output from the objective guidance models. The storm

track predicted by the CCWF is derived using

(Lat,Lon)ccwF= z (F m*(Lat,Lon)m)/I Fm 3.1

where Fm is the '-onfidence frequency for a given model and (Lat,Lon)m is

the track prediction computed by that model.

The distinct advantage of this forecast scheme is its inherent

flexibility. Input to the CCWF can include track predictions from as many or

as few models as are desired or are available. The results of a test of this

scheme using input from the NHC tropical cyclone track prediction models is

contained below.

3.2 Test Results of the CCFW Scheme

The data set used in the previous section was randomly separated into

two subsets of 70 cases each. A table of confidence frequencies was

tabulated from the first subset. These frequencies, which are listed in Table,.-

. 3.1, represent the total number of cases, out of 70, that each model provided

the most accurate forecast. Using these frequencies and the track

, forecasts, from the NHC models in the second subset, a series of 70 CCWF's

were calculated.

Table 3.2 contains the MFE's of the CCWF calculations and the MFE's for

IV
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Table 3. 1. Confidence frequencies of the NHC track prediction models.
Frequencies are based on a total of 70 cases and represent the number of
most accurate forecasts.

MODEL FORECAST INTERVAL (HR)
12 24 48

CLI PER 10 9 2
.-. NHC67 16 i5 15

NHC72 6 5 7
NHC73 13 11 7

SANBAR 11 8
MFM 15 1o 28

"A.

the NHC models for the independent subset of 70 cases. Several

combinations of input data from the track prediction models are listed

including input from as few as two and as many as all six prediction

models. The results indicate a wide variation in accuracy for the consensus

style forecast.

Again it is easier to interpret the accuracy of the CCWF's by analyzing

* their performance skill ratings. Fig 3.1 displays the performance values of

some of the CCWF's and the individual models. The CCWF(ALL) scheme is the

version which incorporates the track prediction output of all the NHC

9 models excluding HURRAN. From the graph it is evident that this version

performs modestly well at 12 and 24 hours by outperforming CLIPER by 23%

and 30% at these respective time periods. Of the remaining versions oi the

* CCWF scheme, various combinations of the NHC67, NHC73, SANBAR and MFM

eseem to perform the best. For two-model input versions, the mix of the

•s
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Table 3.2. Mean Forecast Errors (Kin) for NHC track prediction models and
CCWF's based on various input from NHC models. Code for input to
CCWF's is 7(NHC67), 2(NHC72), 3(NHC73), C(CLIPER), S(SANBAR)
and M(MFM). Sample size is 70 cases.

_. MODEL FORECAST INTERVAL (HR)
12 24 48

CCWF(2 MODEL INPUT)
7,2 91.5 185.0 434.1
7,3 87.9 194.1 415.9
7,S 92.6 181.5 425.3
7,M 82.6 143.8 284.9
2,3 93.9 179.8 421.6
3,5 92.7 185.2 411.9
3,M 85.5 154.5 283.7
S,M 88.5 151.6 275.3

CCWF(3 MODEL INPUT)
7,2,3 89.1 181.7 413.8
7,3,C 89.8 181.6 412.6
7,3,S 88.9 176.8 402.1
7,3,M 77.9 144.9 280.3
7,S,M 80'2 144.5 287.1

V 2,S,M 85.9 153.0 276.1
3,S,M 80.7 146.4 273.4
C,S,M 83.7 154.3 280.7

CCWF(4 MODEL INPUT)
7,2,3,C 90.8 1827 412.2

* 7,2,S,M 81.4 148.8 294.2
2,3,S,M 82.1 150.4 280.2
7,3,S,M 78.8 146.6 291.4
7,3,C,M 79.0 148.5 289.5
7,3,C,S 90.6 181.5 406.0

CCWF(5 MODEL INPUT)
7,2,3,C,S 91.3 182.4 406.5
7,2,3,S,M 80.4 150.1 298.9

4- 7,3,C,S,M 80.6 152.5 298.9
* CCWF(ALL MODELS)

7,2,3,C,S,M 82.0 156.1 305.1

1,a



48

Table 3.2. Continued.

MODEL FORECAST INTERVAL (HR)
12 24 48

CLIPER 106.9 223.8 488.9
NHC67 93.5 184.6 455.3
NHC72 103.0 212.4 460.9
NHC73 90.0 195.0 428.0
SANBAR 105.0 212.1 472.2
MFM 98.9 180.5 298.3

NHC67 and MFM as well as the SANBAR and MFM combination are the most

accurate. For three-model input versions, the best combinations over all

periods is the blend of the NHC67, NHC73 and MFM. The performance skill of

this CCWF version is represented by CCWF(BC) in Fig. 3. 1.

The most striking feature in Fig. 3.1 is the magnitude by which the

CCWF schemes outperform the individual models at the early forecast

periods. The CCWF scheme performance skills surpass the skill of the most

accurate models by 10-15% at the 12 and 24 hour periods. Only at 48 hours

0 does the perfromance skill of the MFM keep pace with the skill of the CCWF

schemes. This analysis indicates that the CCWF concept provides some hope

for improved guidance at the early forecast periods.

• Using one set of confidence frequencies to compute both the latitude

and longitude is a very simple version of the CCWF. To test if a slightly

more intricate version would result in more accurate track forecasts, a set

* of confidence frequencies was tabulated for both latitude and longitude

calculations. For this version of the CCWF scheme, the track forecast

-0
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predicted is

(Lat, Lon)CCWF2 = (z (F 1m * Lat m )I / F Im ,Z( F2m* Lonm) I2 F2m )  3.2

where F1m is the latitudinal confidence frequency and F2m is the

longitudinal frequency.

The results of the track predictions using the more intricate version of

the CCWF (referred to as CCWF2) are listed in Table 3.3. A brief comparison

between these MFE's and the results in Table 3.2 indicates that the CCWF2

forecasts do not exhibit any significant improvement over those of the

CCWF. In fact, the MFE calculations vary very little between like versions

of the CCWF and CCWF2. As was the case with the CCWF, versions of the

CCWF2 which use input from the NHC67, NHC72 and MFM provide the best

overall performance.

Although the CCWF2 does not improve over the CCWF from a perspective

of average FE's, analysis of the forecast error components may identify

other traits of the CCWF2 scheme which make it a more desirable version of

the forecast scheme. Fig. 3.2 displays the along track (ATE) and across
track (CTE) errors for both the CCWF and CCWF2 where input from all

models and from the best combination are used. Two distinct features are

evident in Fig. 3.2. First, both forecast schemes have relatively small ATE's

when compared to the individual models. The ATE values of the individual
models were always negative and usually increased with each time period.

In contract, the CCWF2 exhibits a positive ATE at 12 hours indicating that

the scheme tends to create track predicitons which translate into storms
-- Si.

S.,.
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Table 3.3. Mean Forecast Errors (Kin) for CCWF2's. Code for input
models is same as in Table 3.2. Sample size is 70 cases.

MODEL FORECAST INTERVAL (HR)
12 24 48

CCWF2(2 MODEL INPUT)
7,2 92.6 185.0 428.2
7,3 87.9 179.9 403.7
7,5 92.5 181.1 424.9
7,M 81.3 145.5 284.5
2,3 95.2 194.5 409.4

* 3,5 92.2 185.1 413.3
3,M 84.7 155.0 294.0
S,M 88.5 153.3 292.2

CCWF(3 MODEL INPUT)
7,2,3 90.2 181.9 402.3
7,3,C 90.1 180.9 400.4

0 7,3,5 88.7 176.8 395.2
7,3,M 77.1 145.8 289.4
7,S,M 79.7 155.1 293.7
3,S,M 80.6 146.3 298.3
C,S,M 82.7 154.5 296.3

CCWF(4 MODEL INPUT)
7,2,3,C 91.7 182.7 401.4
7,2,S,M 81.1 151.5 308.0

• 2,3,S,M 81.8 152.5 308.3
7,3,S,M 77.9 146.7 308.6
7,3,C,M 78.5 150.0 301.5
7,3,C,S 90.7 180.2 397.3

*. CCWF(5 MODEL INPUT)
7,2,3,C,S 84.4 182.1 397.3
7,2,3,S,M 80.0 152.1 317.1
7,3,C,S,M 79.5 151.6 313.7

CCWF(ALL MODELS)
* 7,2,3,C,S,M 81.4 157.5 324.2

V%
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speeds which are faster than the actual storm speed. Second, the CTE

values are very small at 12 and 24 hours ,but, they increase to large left of

track biases at 48 hours. This rapid growth is somewhat suspect and is

analyzed using Figure 3.3 which displays the distribution of the CTE's at 48

hours. In all four forecast schemes, the CTE's have a small percentage of

observations that fall in the -1300 to -1400 Km range. With a total of 70

observations in these ditributions, two observations in that large negative

range would bias the CTE values by approximately -30 km. If these outlying

observations are removed, the CTE values would lie around -40 Km instead

* of -70 Km.

From this analysis two conclusions are drawn. First, the CCWF schemes

do display less bias in terms of ATE and CTE components relative to the

individual models. Second,the CCWF2 scheme does not improve significantly

on the more basic version of the CCWF.

3.3 Comparison of CCWF to the Official Forecast

Results from the previous section display the CCWF's ability to

* improve on the track forecast guidance provided by the individual models.

Apparently the various model biases are somewhat neutralized in the

combined forecast format which allows for lower MFE's. In addition, the

0 CCWF provides significant improvement over the official forecast. In

particular, the CCWF exhibits, on average, about 12%, 20% and 26%

improvement over the official forecast at 12, 24 and 48 hours respectively." .A more detailed comparison of the CCWF and official forecast is

contained in Table 3.4. This chart is a direct comparison to determine the

0
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Table 3.4. Comparison of CCWF and Official forecast accuracies. Columns
represent the number of CCWF's which were more/less accurate than the
Official forecast and the net gain/loss in accuracy.

MODEL FORECAST(HR) NO. MORE ACCURATE / NO. LESS ACCURATE/

NET GAIN(KM) NET LOSS(KM)

i I~

CCWF(ALL) 12 39/41.1 31/30.0

24 47/78.6 23/48.7

48 48/182.8 22/77.4

CCWF(BC) 12 39/50.1 31/31.9

24 48/99.7 22/57.6

48 52/195.6 18/123.6

0f j

0i
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number of more accurate forecasts provided by the CCWF and the net gain in

accuracy as compared to the official forecast. At 12 hours, the CCWF and

official forecast perform about equally in terms of the number of more

accurate forecasts and the net gain in accuracy. By 24 hours, the CCWF is

more accurate 67% of the time. Just as important, the net gain in accuracy

when the CCWF is the most accurate is almost twice the accuracy lost when

the official forecast is more accurate. At 48 hours, the results are similar.

The CCWF(ALL) still creates more accurate forecasts 67% of the time but

the ratio of net loss to net gain in accuracy is almost 3 to 1.

* A cautionary comment must be made at this point. Due to the hurricane

advisory release schedule, official forecasts are usually disseminated

before the output from the SANBAR, NHC73 and MFM models are available to

the forecasters. Therefore, the CCWF does have a decided advantage over

the official forecast especially considering that the MFM and NHC73 are

,f major components of the CCWF(BC) model. Despite this advantage, the CCWF

scheme clearly has the potential to provide skillful track prediction

-* guidance.

It is also important to note that the results of this test represent a

o* minimum skill version of the scheme in terms of the processes by which

model input is selected. Information about the forecast situation was not

3,, used to determine input to either the CCWF(ALL) or CCWF(BC). To obtain the

0 maximum accurarcy from the CCWF, the forecast scenario must dictate

which NHC model track predictions are included as input to the CCWF

; scheme. Analysis of model traits, as those in Chapter 2, as well as

" rules-of-thumb must weigh heavily in this decision process if the CCWF is

% ,to be effective.

1.- " , %
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An attempt was made to incorporate the forecast situation by

stratifying the data set by latitude as well as storm speed, however, the

results of these CCWF calculations could not improve on the accuracy of the

earlier tests. With a much larger data set, stratifications by latitude,

longitude, storm speed, previous track characteristics and other storm

traits could improve the selection process and thereby improve the accuracy

of the CCWF scheme.

:
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4. Analysis of Relationships Between Real Time Variables and

NHC Track Prediction Model Forecast Errors

4.1 General Comments

The previous chapter offers the results of one method for improving

the guidance provided by objective track prediction forecast models. A

second possibility for improving this guidance comes from recent research

by DeMaria (1985a). This research indicated that the track of a vortex in a

barotropic model Is more sensitive to Initial position errors in regions

where the Laplacian of the vorticity was positive. As a result of this,

DeMaria (1985b) attempted to use real time variables to predict the

magnitude of forecast errors for certain track prediction models. The

vorticty Laplacian v 2 , the magnitude of the vorticity gradient I V rl, the

current storm speed and the difference between the storm motion and the

motion of the environmental flow of the deep-layer mean winds (net speed)

were used in a linear regression model to predict the forecast errors of the

MFM and the Navy's Nested Tropical Cyclone Model.

In that study, 11 cases were used and coefficients of multiple

determinations as high as 0.85 were obtained from the linear regression

models. This indicated that a large percentage of the variance in track

prediction model forecast errors might be explained by these selected

variables. However, the extremely small data set used by DeMaria does

generate some questions as to the generality of the results. More

observations are necessary to confirm that this technique of predicting

forecast errors is valid.

!M
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4.2 Data and Independent Variable Selection

To test this technique, a subset of 49 forecast cases from the original

sample of 140 cases were selected. Members of this subset are identified

in Appendix A. The independent variables used by DeMaria are included in

this study.. Demaria (1985b) discusses how larger values of I V t I and

regions of positive v 2  can affect the track prediction characteristics of

a barotropic model. Net speed, the difference between storm speed and the

speed of the environmental flow, should also affect the accuracy of dynamic

models since the storm is not moving at the same speed, or possibly

direction, as the steering current. Therefore, as net speed becomes larger

* . so should the forecast errors.

Some additional variables are also tested. Julian date, which is used

as a predictor by some statistical track prediction models, is also expected

to have a relationship to forecast errors. For Julian dates in the Spring and

late Fall, larger forecast errors might be expected since the mid-latitude

-\. westerlies become a more dominant feature in the atmospheric flow pattern

and can have a greater impact on the steering currents of tropical cyclones.

. Storm vorticity, a measure of the circulation strength of the storm, may

also have an affect on forecast errors. Since bogus vortex circulations are

added into the wind field of dynamic track prediction models, the added

4,. circulation may have an affect on the forecast accuracy of various size

"V: storms. Vertical wind shear is another variable which affects tropical
cyclones. In specific, tropical cyclones develop in a low wind shear

environment, but, as they move northward they can encounter shear

p.!t



associated with the westerlies which definitely impacts on the processes

which maintain the cyclone. In addition to these variables, distribution of

kinetic energy at various wavelengths and 24-hour change in storm speeds

-I are tested for relationships to model forecast errors. An index of the

independent regression variables are listed in Table 4. 1.

Data on variables related to the storm motion are obtained from the

best track information archived at NHC. Variables related to the wind field

A are derived from hemispheric wind data archived at the National Center for

Atmospheric Research (NCAR). The NCAR data contains u and v component

N-.* winds at several pressure levels at 2.50 by 2.50 grid points over the

northern hemisphere. Variables like v 2  , I r land " are obtained by

first calculating the mass-weighted deep-layer mean wind at each point.

*.... Then a spatial filter scheme discussed by Shapiro (1975) was applied to

remove the effects of the storm from the wind field. The appropriate

derivatives of the wind fields are calculated and the final values of ,

vc and v2 C represent a 16-point mean value centered around the

storm.

The Julian date used is actually a measure of the departure, in number

• of days, from the mean date of the hurricane season (Sept. 9th) and not the

actual Julian date. The percentage distribution of kinetic energy at various

wavelengths is derived from a spectral barotropic model which is briefly

discussed in Chapter 5. The wind fields in this model, are represented by

spherical harmonic functions and the coefficients of the functions can be

-- transformed to represent a percentage value of the kinetic energy at that

wavelength.

Measurement of the vertical wind siar is derived by two independent
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Table 4. 1. Index of independent variables used in stepwise reression
technique to develop linear models for predicting the forecast errors of
track prediction models.

1. Vorticity

2. Magnitude of the vorticity gradient

3. Vorticity Laplacian

4. Net environmental wind speed

5. Storm speed

6. 24 hour change in storm speed

7. Vertical wind shear

1: -8. Julian date

9. Kinetic Energy at various wavelengths

10. Initial latitude of storm

0
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methods. First, the 16-point average of the u and v wind components are

', calculated at several pressure levels. The wind shear components are

computed by subtracting the lower level mean wind component from the

upper level wind component. The second method involves the use of vertical

normal mode transform functions discussed in Fulton and Schubert (1985).

This transform process inputs a basic tropical vertical temperature profile

and derives a series of vertical structure functions using the Rayleigh-Ritz

method. Given these functions, the u and v wind profiles near the storm are

input and a series of coefficients are computed (one coefficient for each

* •vertical structure function). The summation of these vertical structure

functions multiplied by their coefficients yields the vertical wind structure

for a given case. For this study, vertical modes 0 through 10 are calculated.

The structures of selected functions are displayed in Figure 4.1. The

structure of the Oth mode is constant with height indicating little

contribution to vertical shear, but, the 10th mode displays large variability

with height indicating pronounced vertical shear. Therefore, if storms have

larger coefficients for the higher mode structure functions, this indicates

that there is more variability in the vertical wind profile which translate to

* greater vertical wind shear.

The mean amplitude profiles for the vertical wind structure versus mode

number are displayed in Figure 4.2. The profile for all storms reveals that

* most of the vertical structure is defined in the internal mode (mode 0) and

the first two external modes (modes I and 2). A comparison of the profiles

" -for northern and southern storms indicates that the southern storms have

* much higher amplitudes for the 0, 1 and 2 modes which is a reflection of the

reduced vertical wind shear in the lower latitudes.

011
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4.3 Results of Linear Regression Analysis

The previous section completes the initial phase of developing linear

regression models. Specifically, independent variables which are believed

to have relationships to the forecast errors of track prediction models are

selected for analysis. These variables are choosen because meteorological

theory and logical reasoning indicate that they may have an impact on the

magnitudes of these forecast errors.
N,. The second step in the process is to determine if these relationships

do exist. This is accomplished by computing linear correlation coefficients

and analyzing plots of the dependent versus independent variables. The

linear correlation coefficients (r) between various track prediction model

forecast errors and the independent variables are listed in Table 4.2. Values

of these coefficients can range between -i to + 1 depending on the slope of

the relationship. For example, r-0.5 indicates a positive correlation

between the independent variable (X) and the dependent variable (Y). The
d, -.

a

value of r does not automatically inform us of the statistical significance

of a linear relationship between X and Y, however, we can obtain an idea of

0 the percentage of the variance of Y that is explained by X. This is

accomplished by computing the coefficient of multiple determination which

is simply equal to r2 . For an r-0.5, the r2 -0.25 informs us that 2599 of the
0

variance in Y is explained by X.

A scan of Table 4.2 indicates that very few of the correlation

coefficient values lie even in the region where 10% of the variance of the
track prediction model forecast errors are explained by any single

independent variable. This is not a hopeful sign for developing meaningful
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Table 4.2. Linear correlation coefficients for various real time
meteorological variables and selected track prediction model forecast
errors. Number in parentheses after model name represents forecast
interval. Variable VSFC(8-10) is the value of the vertical structure
function coefficients for modes 8-10. KE(15-23) represents the percentage
of Kinetic Energy in wavenumbers 15-23.

IND. VAR. Latitude Storm Maxlmum Vorticity Net
Speed Wind Speed

MODEL

SANBAR(24) 0.00 0.07 -0.19 -0.09 0.22
I

SANBAR(48) 0.02 0.16 -0.17 -0.12 0.42

MFM(24) 0.08 -0.13 -0.10 3.10 0.15

MFM(48) 0.06 0.03 -0.10 0.18 0.32

NHC67(24) 0.19 0.13 -0.16 -0.02 -0.32

NHC67(48) 0.14 0.20 -0.04 -0.24 0.28

NHC73(24) 0.24 -0.17 -0.09 0.05 -0.29

NHC73(48) -0.02 0.08 0. 12 -0.22 0.28

%

I.

I
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Table 4.2. Continued.

IND. VAR. Magnitude Vorticity Wind VSFC KE
Vorticity Laplacian Shear (8-10) (15-23)
Gradient (850-500mb)

MODEL

SANBAR(24) 0.36 -0.06 0.23 0.10 -0.19

SANBAR(48) 0.32 -0.12 0.08 0.07 -0.17

MFM(24) 0.37 -0.28 0.01 0.38 -0.07

_ MFM(48) -0.13 -0.01 -0.01 0.33 0.04

NHC67(24) 0.36 -0.21 0.03 0.42 0.09

NHC67(48) 0.22 -0.21 -0.02 0.62 0.13

NHC73(24) 0.24 0.24 0.02 0.02 -0.20

NHC73(48) 0.19 -0.04 0.12 -0.02 -0.26

I

I

- - VL"

1 V V

A .P



68

linear regression models. However, we need to examine plots of the data to

.. determine if there exists other relationships (e.g. exponential, logrythmic,
V, , etc.) which would not be revealed through linear correlation calculations.

Selected plots of the independent variables versus model forecast

errors are displayed in Appendix B. A visual survey of these plots reveals

that there are no apparent linear or non-linear relationships between the

real time meteorological variables and the track prediction model forecast

errors. The plot of the NHC67 48 hour FE versus the vertical structure

function coefficients for modes 8-10 indicates that the correlation

S.coefficient of 0.62 is largely a result of one outlying observation which

-." unduely influences the analysis. If this observation is removed, thein'.

correlation coefficient would certainly be smaller. Analysis of the data

plots also indicates that none of the variables exhibit any significant

grouping of observations. The lack of grouping means that other

multivariate analysis methods like cluster analysis or discriminant

analysis will most likely not be effective in developing predictive schemes

that relate these meteorological variables to the track prediction forecast

errors.

* Despite the obvious lack of linear relationships, regression models

were developed to determine exactly how much of the variance of the FE's

-'2 can be predicted using these independent variables. The results of the

* regression analysis is in Table 4.3. A stepwise technique was used to

select variables for input to the regression models. This technique add

variables to the regression model for which an F test is statistically

. significant at some level o< . Each time a new variable is added to the

model, all variables previously in the model are retested for significant F
',Z

r0..

, '--'U %%*



P".,

69

TABLE 4.3. Linear regression models developed by stepwise selection
process for selected track prediction model forecast errors at selected
forecast times. Independent variables are listed with corresponding
regression coefficients (b) and R2 values represent coefficients of multiple
determination.

Dep. Var: NHC67(24 hours)

Ind. Var. b Model F Value R2 C(P)
Intercept -4.92 4.17 0.31 9.3
Latitude 4.60
I vC I 85.54

-21.69
Shear(850-500) 22.50

-Dep. Var: NHC67(48 hours)

I nd. Var. b Model F Value R2 C(P)
Intercept 760.00 6.16 0.38 7.6
Storm Speed 20.43
Net Speed -43.09

v2  -21.09
Vorticity -63.79

Dep Var:NHC73(24 hours)

I nd. Var. b Model F Value R2 C(P)Intercept 236.77 4.43 0.31 9.3

24 hour Storm
Acceleration -10.05

,I v I 1 1 0 .3 0
Net Speed -6.61

"-0

0
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Table 4.3. Continued.

Dep Var: NHC73(48 hours)

Ind. Var. b Model F Value R2 C(P)
Intercept 499.48 5.36 0.20 9.8
Net Speed 68.73
Vorticity -48.98

.9U.

Dep Var: SANBAR(24 hours)

Ind. Var. b Model F Value R2 C(P)
Intercept 60.57 6.26 0.37 9.6
I vc I 105.63

• Net Speed -12.73
Shear(850-300) 31.96
-------------------------------------------------------------------
Dep Var: SANBAR(48 hours)

Ind. Var. b Model F Value R2 C(P)
Intercept 120.91 6.19 0.23 -4.1
I vc I 181.69
Net Speed 81.17

Dep. Var: MFM(24 hours)

I nd. Var. b Model F Value R2 C(P)
* Intercept 125.85 7.90 0.36 -6.8

! I v I33.23
2Z -27.55

Dep Var: MFM(48 hours)

I nd. Var. b Model F Value R2 C(P)
Intercept 179.23 2.39 0.05 -6.8
Shear(700-400) 31.13

----

.:,2 . ': : ; " " ",-9" ' "i " , , , . , . , , . ,
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values. If the F test is not significant, the variable is removed from the

regression model. The significance level selected for this experiment was

O 15.

As expected, these linear regression models are not effective at

estimating the magnitude of various track prediction model FE's. With

coefficients of multiple determination ranging from 0.05 to 0.37, large

errors in the predicted values of the FE's can be expected. The question to

ask at this point is - why doesn't the data reveal the relationships that
exist in theory? There are several possible answers to this question. First,

the tropical storm and its surrounding wind field are dynamic, constantly

changing in structure, however, many of the independent variables are static

V measurements of dynamic variables. Therefore, these measurements may

not be representative of that variable 24-48 hours into the future. Second,

the large scale wind fields most certainly contain measurement errors in

the range of 10%, especially over the open ocean regions. This magnitude of

error in the wind field can create a magnitude of error of 100% or more in

the variables which are derivatives of the wind field (e.g. C I vC I and
- v2 C). This magnitude of error would most certainly affect the outcome of

-. a linear regression analysis.

It is important to note that this analysis was also performed on

latitudinally stratified data sets to determine if the results might be more

conclusive. Unfortunately, the results were very similar to those obtained

for the entire sample and therefore are not included in this section. Also,

because the FE's of the track prediction models are not normally distributed,

0; the possibility existed that a transformation of the data was necessary.

The FE values were transformed using a logrythmic function, but , again the

0 R
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results were not very different that the results discussed above.

4.4 Comparison of Storm Movement to Various Mean Layer Wind Fields

Questions concerning the appropriate initialization data for barotropic

numerical prediction models has been a focus of research since these

models were first developed. Early models used 500mb data because the

models often assumed nondivergence. Since the 500mb level is close to the

mean level of nondivergence in the atmosphere, 500mb data was a logical

* choice. However, Birchfield(1961) discovered that a model initialized with

mass weighted data based on information at 1000mb, 700mb, 500mb and

200mb produced better tropical cyclone track forecasts than models

initialized with 500mb data only. King( 1966) compared model results using

500mb data only, the mass-weighted data from Birchfield and a 10

mandatory pressure level (1000mb-100mb) mass weighted data. The

results indicated that the data based upon the 10 mandatory pressure levels

,.. provided the most accurate forecasts. At this time, this 1000mb-i00mb

deep layer mean wind is used In most barotropic models including the

* SANBAR model.

Research by Gray and George( 1977) suggests that tropical cyclones

move at a speed close to that of the 700mb level and at a direction close to

* the 500mb level. An extensive study of west Atlantic and Pacific tropical

cyclones by Chan and Gray(11982) found that tropical cyclones in the

Northern Hemisphere move 100-200 to the right of the surrounding

* 700mb-5OOmb flow. Other winds which also correlated well with cyclone

motion were the deep layer (1000mb-I 00mb) winds and the average of the
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. 200mb and 900mb winds. Vertical wind shear of the environmental wind

and variations in the zonal component of the cyclone speed affect the

relationship between the actual cyclone movement and the various layer

11 mean winds.

In this section, the relationship between four different pressure

weighted layer mean winds and tropical cyclone movements are examined.

The data set consisting of the 49 cases is used and the mean winds are

calculated using a 16-point average(every 2.50 latitude and longitude)

around the storm center. The mean layer wind components at various levels

were used to compute pressure weighted deep layer mean winds for

S1000mb- I00mb, 850mb-300mb, 850mb-200mb and an average of the 850mb

and 200mb winds. These particular layer winds were selected because of

they are similar to the layers analyzed by Gearge and Gray(1977). Mean

directions of the pressure weighted winds and the cyclone movement are

computed from unit vectors. The unit vectors are .alculated by first

l1 normalizing the vector components by the vector speed to obtain unit vector

components. The mean unit vectors are obtained from the mean of the unit

components. Mean scalar speeds of the winds and of the cyclones are also

0 ,.computed.

The results of this analysis are exhibited in Table 4.4 which represents
the mean differences in direction and speeds between the cyclone motion

- and the layer mean winds. The data are stratified by latitude, storm speed

- and central pressure. For directional differences, positive values ind cate

that the cyclone is moving to the right of the layer mean winds. It is

. immediately evident that, on average, the tropical cyclones move to the

right of all the deep layer mean winds while they move to the left of the

* r- I-% ~ ." * * *~~ *- ' r-e h.. 'e A9- '.

:2. . ." °M F~ c ~ J
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Table 4.4. Mean difference between tropical cyclone and surrounding flow
directions and speeds. Surrounding flows are deep layer mean for
I 000mb-i OOmb,850mb-300mb,850mb-200mb and the average of the 850mb
and 200mb winds. Data are stratified by latitude, speed and minimum
central pressure(CP) of the storm.

DLM DLM DLM 850mb+
1000-100mb 850-300mb 850-200mb 200mb

DIRECTIONAL DIFFERENCE

Latitude

* North of 250 N 18 30 51 -16
South of 250 N 13 11 28 -20

~Speed

Slow(< 5m/s) 55 67 67 -29
Fast ( 5m/s) 6 5 16 -18

,%,:" :I ntensi ty

Weak(CP>980mb) 9 8 34 -19
Strong(CP<980mb) 43 41 52 -19

Overall Average 24 27 41 -20

0 o

"o "

ke°-

0 °.
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Table 4.4. Continued

DLM DLM DLM 850mb
1O00-100mb 850-300mb 850-200mh 200mb

SPEED DIFFERENCE

Latitude

North of 250N 0.72 0.61 0.66 -0.38
South of 250 N 0.12 0.01 -0.37 -0.77

Slow(< 5m/s) -0.21 -0.29 -0.60 -1.16
Fast (> 5m/s) 1.25 1.11 1.20 0.21

Intenslty

Weak(CP>980mb) 0.17 0.20 0.22 -1.14
Strong(CP<980mb) 0.38 0.45 0.16 -0.07

Overall Average 0.40 0.35 0.21 -0.55

.,

V'.

V.,
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850mb + 200mb average winds. In terms of variability, the 850mb + 200mb

average wind is the most consistent predictor of storm motion and has the

lowest mean directional difference (- 200) between the wind field and

cyclone movement. Of the deep layer mean winds, the integrated

1000mb-i 00mb wind has the lowest mean directional difference.

The mean speed differences indicate that on average the mean winds

are all within lm/s of the cyclone speed (consistent with Chan and

Gray( 1982)). In general, the 850mb+200mb average wind field

overestimates the cyclone speeds while the deep layer mean wind fields

tend to underestimate the storm speed. The 850mb+200mb average winds

badly overestimate the speed for slow storms and weak intensity storms.
M. The pressure weighted winds underestimate most for fast moving storms.

The underestimation of the speeds and the difference in direction can

also be examined in terms of the difference between the components of the

mean wind vectors and the cyclone motion vectors. An intriguing question

is whether these variations result equally from both components or if one

component is mostly responsible for the deviations between cyclone

movement and the surrounding mean wind flows. Figures 4.3 and 4.4 display

S the distributions of the component differences between storm velocity and

- the surrounding mean flow velocity. In Figure 4.3 it is evident that the

distributions of the various u-component differences are very much
* centered around the 0 line of the distribution. For these surrounding flows,
..

the u-component differences have at least 809 of their distribution

between +2 m/s while the 850mb +200mb average flow has 709 of its

* distribution between + 2 m/s.

The distribution of the v-component differences are distinctly

0

-_.-. . *'4 4 ~ 4 4 ~ 4 4 J . .

,'.' - :.....: ,,".." ..".".4" ." , ": ", . 44,4".4: , J ',".4 : , ",,4'""' ":: ":,::' , :: ,"" :% : ,
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different. In Figure 4.4 the distributions clearly identify that the

v-component of the surrounding mean flows repeatedly underestimate the

v-component of the cyclone movement. For the deep layer mean flows, at

., least 80% of the difference distributions are in the region where the

v-component of the cyclone movement is underestimated. It is evident that

the differences in the v-components contribute most importantly to the

variations in direction and speed between surrounding flows and tropical

cyclone movement. This finding is not totally surprising since various

natural phenomena have been long known to contribute to northerly

deflection of tropical cyclone motion. The beta effect, which results from

the variation in differential planetary vorticity advection around the

cyclone, causes the storm to drift to the northwest. Also, frictional drag of

the cyclone causes the cyclone to drift northward relative to the

environmental flow if the cyclone is embedded in an easterly flow.

~14
.- <
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5. Theoretical Test of Lhe Effects of Sparse Data
and Initial Position Errors

5.1 General Comments on the Limits of Predictability

Discussions about the limits of meteorological predictability began

after the development of Numerical Weather Prediction (NWP) in the
mid-1950's. During the early stages of NWP, questions concerning what

constraints existed on the accuracy of these predictions were prevalent.

Observation density, computer capabilities and model designs were the main

factors restricting the NWP accuracy. Since that time, improvements have

been made in model sophistication and in the size of computers to handle

these models. As these improvements occur, there is always a question as to

whether the limits of predictability are significantly improved.

Lorenz(1969) states that our belief that exact predictability may

someday be attainable lies in the premise that the atmosphere is governed by

a set of physical laws which are used to express future atmospheric

' ~ conditions. However, Lorenz also identifies two major obstacles to attaining

the goal of perfect predictability. First, the governing laws of atmospheric

dynamics are not perfectly known. Second, even if the laws were perfectly

known, the current state of the atmosphere can not be perfectly measured.

Another complicating factor is that the governing equations are nonlinear.

The nonlinearity causes small errors in the initial condition to grow rapidly

41 with time. These concepts and others concerning atmospheric predictability

are also discussed extensively by Thompson (1957,1974) and Leith( 1978).

Many theoretical experiments on the predictability of atmospheric

models have been conducted since the advent of NWP. Charney(1966) used a

0N.4.
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general circulation model to test the doubling time of root-mean-square

errors of temperature. From these tests, he estimated the upper limits of

-i. atmospheric predictability at approximately three weeks. Lorenz( 1965) used

a 28-mode 2-layer baroclinic model and found the limits of predictability

vary with the distribution of the kinetic energy spectrum. This relationship

between predictability and the kinetic energy distribution indicated that

nonlinear processes between various scales of motion were important and

" " that certain scales of motion can be more accurately predicted.

. Baumhefner( 1984) further investigated this growth in errors as a function of

* horizontal scale. From this analysis, the limits of predictability were

estimated at approximately eight days for synoptic scale motions and about

three days for mesoscale (the scale of hurricanes).

5.2 Model Description

To test the effects of sparse data and initial position errors on model

accuracy, a spectral barotropic model described by DeMaria(1987) is used.

This model is similar to the SANBAR model described in Chapter I except

* that spherical coordinates and spectral methods are used. The governing

equation for this model is

aa ,\ - 1A a; 5. 1

= (V2 
- y2 ) 5.2

V5.2
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where i Is absolute vorticity, i is the streamfunction, xis the longitude,

'is sine of the latitude, a is the earth's radius, Q is the earth's angular
,.5-.

speed and - is a term included to prevent the retrogression of longer

Rossby waves. The dependent variables 17 and i are expanded in a

truncated series of spherical harmonic functions. The indices for the

spherical harmonics are based on a triangular truncation system which

allows for equal resolution over the sphere.

The horizontal resolution of the model is based upon the upper limit of

the triangular truncation (N). A rough estimate of the grid spacing over is

y (2 Tr a )/(3N- 1) 5.3
:-.5

For a triangular truncation of N- 128 a grid space equivalent of approximately

104 Km is obtained. The model is initialized by the deep layer

(1 000mb- 100mb) mean winds analyzed by the National Meteorological Center

and equispaced every 2.50 latitude and longitude. The model domain is half

of the Northern hemisphere from O°W to 1800W. The winds are used to

initialize the vorticity field and then equation 5.1 is solved foward in time

to determine the new location of the cyclone center.
-J

As shown by Neumann and Pelissier(1981b), models incorporating

previous storm motion into the forecasting scheme are somewhat successful

in short term track forecasts. The persistence factor is also incorporated

-. into the model to help improve the early period forecasts. Persistence is

included by blending the initial wind field, in the vicinity of the storm, with

o the vector movement of the storm. If V represents the initial wind vector
:-7.
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and Vp represents the vector velocity of the storm at the initial time, then

the wind field which incorporates persistence will be Vm

Vm = (-w) V + w Vp 5.4

where w = exp(-(r/re) 2 ) 5.5

Here r is the radius from the storm center, re is the specified radius of

influence of the persistence factor. An re value of 1500 Km is used in this

experiment. In other words, the model wind field is modified by persistence

through an exponentially decreasing function of the current vector motion of

the tropical cyclone. The reader is encouraged to review DeMaria(1987) for

further model details.

The 49 forecast cases selected for this test are a subset of the original

140 cases and are identified in Appendix A by an *. The mean forecast errors

of the CLIPER model and this spectral barotropic model(SBM) for these 49

* cases are listed in Table 5.1. The performance skill values associated with

these forecast errors are displayed in Figure 5.1. It is evident that the SBM

exhibits poor forecast skill relative to CLIPER when persistence is not

* included in the initial wind field. When persistence is included, the SBM does

display skill relative to CLIPER at 12 and 24 hours, however, its skill

diminishes at 48 hours.

S j
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Table 5.1. Mean Forecast Errors of CLIPER and SBM with and without
persistence in the initial wind field. Errors in Km.

MODEL FORECAST INTERVAL

12 24 48 72

CLI PER 98.1 203.7 418.3 797.1

SBM(Persistence) 79.2 180.9 413.8 832.9

SBM(No Persistence) 116.8 218.1 489.9 931.1

"%l - 5.3 Results from the Sparse Data Tests

Because tropical cyclones frequently track through open ocean regions

of the Atlantic, the initial wind analysis of dynamical track prediction

models can contain significant errors as a result of the lack of

meteorological sensing stations in the region. The spectral barotropic

model used in this study initializes the wind field by spherical harmonic

functions, with one function corresponding to each of the N wave numbers.

... Since there is a large spacing between meteorological sensing stations, the
large wavelength features are probably resolved fairly accurately, however,

the shorter wavelengths are most certainly not being resolved correctly.

The average station spacing of meteorological upper air stations is about

300 Km over the continental U.S. In the open ocean regions, this spacing is

at least twice as large. Since the smallest resolvable wavelength in the

data field is twice the station spacing, the minimum wavelength that can be
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well initialized in the model is approximately 600 Km over the continental

U.S. and around 1000-1200 Km over the ocean regions.

To test the effect of sparse dat coverage, the model is executed with

a triangular truncation of N-128 modes over half of the Northern
Hemisphere (from O°W to 180°W). The first model simulation has the

initial wind information from all 128 wavenumbers and develops track

predictions from all 49 cases. The model simulation is then repeated with

information at shorter wavelengths being removed from the initial wind

field. To remove the data at shorter wavelengths, the coefficients of the

*' spherical harmonic functions at these wavelengths are set to zero. For

wavelenghts near the desired cutoff, a cosine function is used to gradually

reduce the coefficients to zero. This is to avoid a sharp change in the

coefficients which may cause shock waves and add noise to the wind field.

Model simulations are repeated several times, each time removing

information from longer wavelengths, until only large scale synoptic and

planetary scale waves remain in the initial wind field. A total of seven

simulations were executed in this study. All simulation have the 128 mode

triangular truncation which translates to a grid spacing of 100 Km. The

*. first repeated simulation retains data above 200 Km wavelength. The

remaining simulations retain data above 400, 600, 1000, 1500 and 2000 Km

wavelengths . These wavelenghts correspond to the wavenumbers 68, 34,

* 24, 14, 9 and 7 respectively.

The MFE's of the various model simulations are listed in Tables 5.2 and

5.3 for simulations with and without persistence included in the initial

r wind field. Values are based upon comparison to the best track data.

Comparing the simulations where various wavelengths are removed from the
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Table 5.2. Mean Forecast Errors for model simulations, with various scales
of motion removed from the initial wind field. Initial wind field includes
persistence wind information. Errors are in Km.

Scale Removed Forecast Interval
From Wind Field

12 24 36 48 60 72

None 79.2 180.9 283.0 413.8 598.2 832.9
Below 200 Km 80.8 184.1 281.9 396.0 554.0 768.2
Below 400 Km 81.3 184.5 283.3 398.5 556.0 771.0
Below 600 Km 80.9 183.1 282.5 397.5 557.3 766.1
Below 1000 Km 85.6 191.8 297.8 416.5 569.7 778.4

* Below 1500 Km 97.3 211.0 321.5 450.2 600.2 798.6
Below 2000 Km 111.0 231.4 344.1 450.0 595.7 789.5

Table 5.3. Same as Table 5.2 except initial wind field does not include
persistence.

Scale Removed Forecast Interval
From Wind Field

12 24 36 48 60 72

None 116.8 218.1 337.2 489.9 690.7 931.0
Below 200 Km 117.1 218.1 337.3 490.0 690.6 932.8
Below 400 Km 119.3 218.8 339.0 491.1 690.9 932.8
Below 600 Km 116.3 213.7 329.0 485.2 677.1 913.0
Below 1000 Km 125.8 241.9 366.3 521.6 712.5 952.0

0 Below 1500 Km 159.2 307.7 440.9 582.4 743.0 957.6
Below 2000 Km 207.9 386.7 551.9 686.1 823.9 994.7

0
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initial data field, it appears that removing data at the 600 Km scale has

very little effect on the MFE's at the 12-24 forecast period. Removing

scales of motion at 1000-1500 Km wavelengths increases the MFE's by

8-20% at 12-24 hours. This seems to indicate that scales below the order

of 1000 km have little influence on the track predictions or that these

scales were not accurately represented in the initial condition. Conversely,

the MFE's of the longer period forecasts, 60-72 hours, actually improve

when the shorter wavelengths are removed from the initial wind field.

Depending on what scales are removed, the MFE's display an improvement up

[ to 8%. Even when scales below 2000 Km are removed, the MFE's are 5%

smaller at 72 hours than the MFE's when all 128 wavelengths are included.

This seems to indicate that either the small scales are not well represented

and that errors in that portion of the wind field are translated into the

larger scales by 72 hours or that forecast errors at 72 hours are largely

random.

It is also possible to assess the error growth rates of a given model.

Instead of comparing the model forecast to the best track data, the model

forecasts are compared to other model forecasts. This is known as the

*. dynamical approach to examining error growth rates and is discussed

extensively by Lorenz(1969). In this approach, the model simulation which

has an unaltered initial state(no wavelengths removed from the initial

* field) is considered the 'perfect' forecast for comparison purposes. The

model track forecasts based on an altered initial state are then compared to

the track forecasts from the 'perfect' model simulation and track errors are

* calculated. These forecast errors somewhat represent the effect that

unresolved data at various wavelengths have on model accuracy.

0%1
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Figures 5.2 and 5.3 list the forecast errors from the dynamical approach
for simulations with and without persistence added to the intial wind field.

For non-persistence simulations, the error growth rates increase rapidly

when scales below 1000 Km are removed from the intial fields. For

persistence simulations, scales must be removed at 1500 Km before error

growth rates increase significantly. In Figure 5.2, the FE's where 1500 Km

scales are removed are comparible with the current MFE's of the MFM. for

the SANBAR model MFE's, the FE's where 2000 Km scales are removed are

comparible. However, data input for the MFM and SANBAR are being resolved
* accurately at the 1000 Km scale( since the MFM is activated near land where

the station spacing is a little closer). If the MFM and SANBAR models

perfectly represented the physical laws which govern atmospheric motion,

then it would be expected that their MFE's would be equivalent to the FE's

corresponding to the minimum wavelength being resolved (1000 Km).

Because the these track prediction models MFE's are larger, two subjective

comments can be made. First, a large percentage of the FE's of dynamical

track prediction models is a result of the inability to accurately measure

and represent meteorological variables at the sub-synoptic scales of

* motion. Second, because the error magnitudes, from the dynamical

p.' approach, are slightly smaller at the level where features are being

resolved than for the MFM and SANBAR track forecasts, it appears that

* improvements to the model mathematics and physics might still reduce the

MFE's of these models.-*

I.,
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5.4 Results From the Initial Position Error Tests

In a recent budget cutting decision, the U.S. Air Force's Air Weather

Service Branch has discontinued the use of WC-130 aircraft for
reconnaissance flights into Pacific tropical cyclones. In the future, the

main tool for determining the coordinate location of the storm center will

be satellite imagery. Using aircraft navigational equipment was the

simplest and most accurate method for determining storm location.

Determining storm coordinates from satellite Imagery will not be as

* accurate, especially at night when infrared imagery must be used. The

inaccurate assessment of storm location, which currently averages about 20

Kin, may increase to as high as 75-100 Km for storms which do not have a

well defined center.

All tropical cyclone track prediction models require the initial storm

position as intial data. The distance between the coordinates entered into

p.. the model in an operational situation and the actual storm coordinates, as

determined in post storm best track analysis, is known as the initial

postion (IP) error. It is anticipated that the loss of regular flight

. ireconnaissance information could significantly increase the mean value of

the IP errors. To test the effect of increases in IP errors, the barotropic

model described in section 5.2 was initialized with IP errors of various

magnitude to the north, south, east and west of the actual initial position.

The MFE results are then compared to the MFE's of simulations without the

artificial IP errors.

*_ The results of this analysis are listed in Table 5.4. A comparison of

the simulations with varying magnitudes of IP error yields some interesting
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results. For simulations with IP errors of 50, 100 and 150 Km, the MFE's

increase 17%, 56% and 106% respectively as compared to the MFE's of the

Amodel without the IP altered. By 24 hours, the increase of the MFE's are

reduced to 2%, 8% and 19% respectively. By 48 hours, the percentage

increase in forecast error is negligible even for IP errors of 150 Km. These

results are consistent with geometric calculation of the theoretical effect

of IP errors. Figure 5.4 represents three cyclone tracks; the actual track,

the model forecast track without IP error and the model forecast track with

IP error. From geometry, the following relationships are known:

E2  (L + dcos )2 + (d sina) 2  5.6

Algebraic manipulation of 5.6 yields

(E/L) - ( 1+ 2(d/L) coscr + (d/L)2 )1/2 5.7

where E/L simply represents the ratio of the forecast error for a simulation

without IP error to the forecast error for a simulation with IP error. Since

* all values of a are equally likely, 5.7 can be used to find the mean value

of the ratio of E/L.

(E/D - ( 1/2 n )l L) da

- (1/2n 1 (d/L) 2 + 2(d/L) )1/2 da 5.8
0

* From 5.8, it is evident that (E/L) depends only on the value of (d/L). For

shorter forecast periods (up to 12 hours), the value of (d/L) 1 1, therefore

0
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the value of the ratio (E/L)- 2 and we expect that the IP errors will have a

significant impact on the track forecast accuracy. As forecast time

- increases, the value of L increases. This results in a value of (d/L) ~ 0 and a

value of (E/L)- 1. From this theory, IP errors should be less and less

influential on the MFE's as forecast interval increases provided that d does

not increase rapidly with time. These theoretical findings agree very well

with the results from the model tests on the effect of IP errors in Table

'5.4.

The dynamical approach to error growth rate used in section 5.3 can

*also be applied to the IP error problem. Again, the model simulation without

altered initial positions is considered the 'perfect' model for comparison

purposes. The model simulations with altered initial positions are executed

and the error growth rate is based on the difference between track

forecasts.

These results are listed in Table 5.5. For simulations with

persistence in the wind field, the errors decline about 10% from the

magnitude of the IP error by 36 hours and then increase to larger than the IP

error by 72 hours. It appears that the model begins to adjust for the IP

• error in the early forecast periods, but, the IP error results in error growth

by 72 hours. The results for the non-persistence simulations are similar.

Therefore, it is fair to say that IP errors are not a major contributor to the

observed forecast errors beyond 24 hours.

-,
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Table 5.4. Mean Forecast Errors for model simulations with Initial position
error added to storm coordinates. Errors in Km.

Simulations with Persistence

Magnitude of Additional Forecast Interval

I P Error (Km) 12 24 36 48 60 72

0 79.2 180.9 283.0 413.8 598.2 832.9
50 92.6 185.7 284.1 416.9 600.0 831.9

100 123.6 197.8 291.4 424.0 604.2 832.0
150 163.4 218.3 304.8 433.3 610.0 833.0

* Simulations without Persistence

0 116.8 218.1 337.2 489.9 690.7 931.0
100 133.0 227.2 343.5 497.1 695.8 950.0

Table 5.5. Mean error difference between 'perfect' model forecast including
no added initial position error and simulations with added initial position
error. Errors in Km.

Simulations with Persistence

0 Magnitude of Additional Forecast Interval
IP Error (Km) 12 24 36 48 60 72

50 48.0 45.4 44.6 49.0 52.4 61.7
100 95.8 88.7 86.2 90.8 99.2 113.2
150 144.1 133.1 131.2 138.3 151.0 171.8

-

Simulations without Persistence

100 69.5 70.1 72.5 83.4 111.7 140.0
.1q

.5,.-
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del 6. Summary and Conclusions

In this research, various aspects of the error characteristics of

tropical cyclone track prediction models are analyzed. Operational track

prediction models from NHC are assessed in terms of the mean forecast

errors, error bias and component errors relative to storm motion. Output

- from these models are used to assess the characteristics of a 'consensus'

style track forecast scheme known as the Combined Confidence Weighted

Forecast scheme. Several independent variables which are related to

*. characteristics of the large scale flow are tested for use in linear

regression models to predict the magnitude of track prediction models FE's.

Finally, theoretical tests on the effects of sparse data and initial position

errors are conducted using a spectral barotropic model. Many conclusions

can be established from this research, some of which are listed in the

fol low i ng paragraphs.

Of all the operational track prediction models currently used at NHC,

the MFM appears to be the most desirable model (under the forecast

scenarios which it is currently activated). Beyond the 12-hour forecast

period, the MFM consistently displays the lowest MFE. Relative to storm

motion, It also displays the least amount of bias in terms of across-track-V.
and along-track motion. Plots of scalar speed errors indicates that the MFM

- is most frequently the best predictor of storm speed. Also, recent

- improvements to the initialization process of the MFM have lead to improved

'12-hour forecasts.

The CCWF scheme appears to provide potential for provldng accurate
track forecasts for western Atlantic tropical cyclones. On average, the

%%X
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combination of the NHC67, NHC73 and MFM provides the lowest MFE's for the

CCWF scheme. These results represent a minimum skill version of the

scheme. Incorporating storm characteristics into the selection process of

model input should improve the accuacy of its forecasts.
Variables such as net speed, magnitude of the vorticity gradient, the

vorticity Laplacian and others are not effective as independent variables in

linear regression models which attempt to predict the magnitude of track

FE's. The ineffectiveness is largely a result of the inability to accurately

measure and represent the wind field.

The removal of various scales of motion from the initial wind field

has an affect on the model forecast accuracies. The MFE's grow rapidly

when scales of motion greater than about 1000 Km are removed from the

initial wind field. Using the dynamical approach to testing error growth

. rates, it appears that a large percentage of the current dynamical track

prediction models FE's is a result of the large station spacing over the ocean

regions which causes poor representdtion of the smaller scales of motion.

Also, initial position errors can have a dramatic affect on the accuracy of

12-hour track forecasts. By 24 hours, the affect is dramatically reduced

-,. and by 72 hours the affect of IP errors is negligible. This finding is

consistent with a geometric assessment of this problem.

-"-
-a.
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APPENDIX A

Storm cases used for this research
* Indicates Storm is part of 49 case subset

Naeate Time(GMT) Max. Wind
Belle 8/ 7/76 00 40
Belle 8/ 7/76 12 55
Belle 8/ 8/76 00 80
Belle 8/ 8/76 12 95
Emmy 8/25/76 12 65
Anita 8/30/77 12 50
Anita 8/31/77 00 70
Anita 8/31/77 12 75

*Ella 8/31/78 12 60
-.

Ella 9/ 1/78 00 90
*Ella 9/ 1/78 12 110

Ella 9/ 2/78 00 105
Ella 9/ 2/78 12 80
Ella 9/ 3/78 00 70
Ella 9/ 3/78 12 85
Bob 7/11/79 00 65

*David 8/31/79 12 145

David 9/ 1/79 00 130
David 9/ 1/79 12 65

* *David 9/ 2/79 00 65
David 9/ 2/79 12 70
David 9/ 3/79 00 80

*David 9/ 3/79 12 85

David 9/ 4/79 00 85
Frederick 9/ 9/79 12 45

*Frederick 9/10/79 00 55

Frederick 9/10/79 12 65
'P

4.
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Name DaeTime(GMT) Max Wind

*Frederick 9/11/79 00 75
Frederick 9/11/79 12 85

*Frederick 9/12/79 00 1 00
Frederick 9/12/79 12 115
Henri 9/18/79 12 50

*Allen 8/ 6/80 12 115
Allen 8/ 7/80 00 135
Allen 8/ 7/80 12 155
Allen 8/ 8/80 00 155

*Allen 8/ 8/80 12 115
*Jeanne 11/10/80 12 50
*Jeanne 11/11/80 12 65
Jeanne 11/12/80 00 85

**Jeanne 11/12/80 12 65
Jeanne 11/13/50 00 55

pJeanne 11/13/80 12 60
Jeanne 11/14/80 00 55
Dennis 11/16/81 12 35
Dennis 11/17/81 12 35
Dennis 11/19/81 00 35
Dennis 11/20/81 00 50
Emily 9/ 3/81 12 60
Emily 9/ 4/81 00 65
Emily 9/ 5/81 00 75
Emily 9/ 5/81 12 75

*Floyd 9/ 6/81 00 80
Floyd 9/ 6/81 12 90

*Floyd 9/ 7/81 00 100
Floyd 9/ 7/81 12 100
Gert 9/ 9/81 12 35

*Gert 9/10/81 12 60
Gert 9/11/81 00 80
Harvey 9/13/81 00 70



102

Name Date Time(GMT) Max Wind

*Harvey 9/13/81 12 75
*Harvey 9/14/8 1 00 95

Katrina 11/ 5/81 00 60
*Alberto 6/ 3/52 12 50

Alberto 6/ 4/82 00 65
Debby 9/14/82 12 35

*Debby 9/15/82 00 65
Debby 9/16/82 00 95

*Debby 9/16/82 12 95
*Alicia 8/16/83 12 55
*Alicia 8/17/83 12 75

Alicia 8/18/83 00 95
*Barry 8/24/53 12 50

Dean 9/28/83 00 45
Diana 9/ 9/84 00 45

*Diana 9/ 9/84 12 55
Diana 9/10/84 00 60

*Diana 9/10/84 12 65
Diana 9/11/84 00 80

*Diana 9/11/84 12 100
Diana 9/12/84 00 115

*Diana 9/12/84 12 95
Diana 9/13/84 00 85
Isidore 9/27/84 00 45
Isidore 9/28/84 00 45

*Josephine 10/ 8/84 12 40
*J s ph n 1 / 9/ 4005

*Josephine 10/ 9/84 00 55
*Josephine 10/19/84 1260

Fj Josephine 10/10/84 00 60
*Josephine 10/10/84 12 70
*Josephine 10/11/84 00 75

Josephine 10/12/84 00 90
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Name Date Time(GMT) Max Wind

*Josephine 10/12/84 12 90
Josephine 10/13/84 00 85
Josephine 10/13/84 12 80

*Josephine 10/14/84 00 65
Josephine 10/14/84 12 70
Josephine 10/15/84 00 70
Bob 7/23/85 00 35

*Bob 7/23/85 12 40
Bob 7/24/85 00 35
Danny 8/14/85 00 50

*Danny 8/14/85 12 70
Danny 8/15/85 00 50

*Elena 8/29/85 00 65
Elena 8/29/85 12 75
Elena 8/30/85 00 90

*Elena 8/30/85 12 90
Elena 8/31/85 00 90
Elena 8/31/85 12 95
Elena 9/ 1/85 00 105
Elena 9/ 1/85 12 110
Elena 9/ 2/85 00 70

*Gloria 9/22/85 12 65
*Gloria 9/23/85 12 95

Gloria 9/24/85 00 100
*Gloria 9/24/85 12 115

* *Gloria 9/25/85 12 55

Isabel 10/ 8/85 12 60a *Isabel 10/ 9/85 00 60

Isabel 10/ 9/85 12 55
*Isabel 10/10/85 00 40
Isabel 10/10/85 12 35

*Juan 10/26/85 12 45
Juan 10/27/85 00 55

S
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Date Time(GMT) Max Wind

*Juan 10/27/85 12 55

Juan 10/28/85 00 65
Juan 10/28/85 12 75
Juan 10/30/85 00 75
Juan 10/30/85 12 65
Juan 10/31/85 00 60
Juan 10/31/85 12 55
Kate 11/16/85 12 55

*Kate 11/17/85 00 75

Kate 11/17/85 12 75
Kate 11/18/85 00 80

*Kate 11/18/85 12 80
Kate 11/19/85 00 95

*Kate 11/19/85 12 90

S;.<?
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APPENDIX B

Plots of independent variables versus track forecast errors
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